Recently, linear Fresnel reflectors (LFR) arouse an increasing interest by the scientific and industrial community and have had a really fast development in the domain of concentrated solar power (CSP). LFR is considered as a promising technology which could produce an optical performance lower than those of parabolic trough collector, but its component simplicity would allow high cost reductions in its manufacturing compared to high investment costs of parabolic troughs. The purpose of this paper is to analyze the optical performances of an LFR prototype developed in the framework of CHAMS project, Morocco. The development of this prototype comes to supply industrial applications needing heat at small to medium temperature levels. To achieve this objective, an optical code based on the Monte Carlo (MC) ray tracing technique was developed for optical optimization purposes. The developed code identifies geometrical parameters that have a greater influence on optical efficiency of the LFR system as the mirror spacing arrangement, the receiver height, the receiver geometrical configuration taking into account the secondary reflector shape, and the absorber tube diameter. An analysis is conducted to identify the contribution of each mode of optical losses (blocking, shading, cosine…) in the optical efficiency of the system. Then, an optimization procedure is applied to enhance the optical performances of the prototype.