This paper presents a reliability assessment of a wireless sensor network (WSN) equipped with mini photovoltaic cells (PV-WSN) under natural environmental conditions while accounting for different types of system failures. In particular, our assessment considers the hardware specifications of the sensors, photovoltaic (PV) specifications, the use of rechargeable batteries, communication protocols, and various elements required for efficient detection of environmental conditions. We accomplished this by developing a simulator that generated data for 2 broad WSN conditions: (1) WSN without PV and (2) WSN with PV. The dynamic source routing protocol was employed for these simulations, and the following variables were assessed for both conditions: WSN reliability, the impact of energy consumption on the network, and the types of failures that lead to sensor unavailability. The following assumptions were made to run the simulation: the distribution of WSN nodes is random, with 1 sink node per rectangular cluster, the sensor nodes are structurally and functionally identical, environmental interference and suboptimal orientation impair PV cell recharge capacity randomly, and no communication loss occurs. Our reliability assessment assumed extreme environmental conditions and further made assessments of component reliability that included the following parameters: sensor and PV cell hardware specifications, the rechargeable nature of PV cell batteries for different sensor activity states, the availability of sunlight for powering PV cells, and the energy efficiency of PV cells. We found that network lifetime was prolonged for the PV-WSN condition over the WSN without PV condition, introducing a role for PV cells as potential energy sources for WSNs.