Recent developments in aircraft electrical technology, such as the design and production of more electric aircraft (MEA) and major steps in the development of all-electric aircraft (AEA), have had a significant impact on aircraft’ electrical power systems (EPSs). However, the EPSs of the latest aircraft produced by the main players in the market, Airbus with the Neo series and Boeing with the NG and MAX series are still completely traditional and based on the constant speed constant frequency (CSCF) configuration. For alternating current ones, the EPS is composed of the following: prime movers, namely the aircraft turbofan engine (TE); the electrical power source, i.e., the integrated drive generator (IDG); the command and control system, the generator control unit (GCU); the transmission and the system distribution system; the protection system, i.e., the CBs (circuit breakers); and the electrical loads. This paper presents the analysis of this system using the Simscape package from Simulink v 8.7, a MATLAB v 9.0 program, which is actually the development of some systems designed in two previous personal papers. For the first time in the literature, a complete MATLAB modelled EPS system was presented, i.e., the aircraft turbofan engine model, driven by the constant speed drive system (CSD) (model presented in the first reference as a standalone type and with different parameters), linked to the synchronous generator (SG) (model presented in second reference for lower power and rotational speed) in the so-called integrated drive generator (IDG) and electrical loads.