2012
DOI: 10.1109/tlt.2011.36
|View full text |Cite
|
Sign up to set email alerts
|

Modeling and Simulation of an Adaptive Neuro-Fuzzy Inference System (ANFIS) for Mobile Learning

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
91
0
8

Year Published

2016
2016
2022
2022

Publication Types

Select...
6
2
1

Relationship

0
9

Authors

Journals

citations
Cited by 236 publications
(99 citation statements)
references
References 13 publications
0
91
0
8
Order By: Relevance
“…Broadly, ANN and FLC suffer from some reported drawbacks [27][28][29][30][31][32][33][34]. However, the cooperative of neuro-fuzzy algorithms can be used to overcome the deficiencies of the ANN and FLC methods [35].…”
Section: Summary and Shortcomings Of The Reviewmentioning
confidence: 99%
See 1 more Smart Citation
“…Broadly, ANN and FLC suffer from some reported drawbacks [27][28][29][30][31][32][33][34]. However, the cooperative of neuro-fuzzy algorithms can be used to overcome the deficiencies of the ANN and FLC methods [35].…”
Section: Summary and Shortcomings Of The Reviewmentioning
confidence: 99%
“…The ANN and FIS have good capabilities and interpretability for learning methods and both are used as expert systems [31]. The combination of these two techniques overcome the limitations of ANN computational time and FIS rules error [27][28][29][30][31].…”
Section: Adaptive Neuro-fuzzy Inference Systemmentioning
confidence: 99%
“…Then as presented in [19], an adaptive neuro-fuzzy inference system (ANFIS), which integrates neural network with fuzzy inference system, was deployed to control the speed of a heavy duty vehicle. Not only for control system, but also for mobile learning system, [20,21] incorporated ANFIS as a reasoning engine to deliver learning content for mobile learning system.…”
Section: Fuzzy Logic and Evolving Fuzzy Neural Network (Efunn)mentioning
confidence: 99%
“…Có nhiều mô hình dự báo đã được công bố trong thời gian gần đây như sử dụng cấu trúc cây TAN (Tree Augmented Naïve Bayes) [15], mạng neural ANN [3,14,21], mô hình SVM [6,28],… Trong các mô hình dự báo, hệ ANFIS phù hợp cho các bài toán có dữ liệu đầu vào phức tạp và dự báo được đồng thời nhiều kết quả khác nhau, ví dụ như dự báo giá cổ phiếu dựa trên Hamacher T-Norm nhiều đầu vào và ANFIS [29], dự báo giá đóng (close) [25], mô hình ANFIS áp dụng trên di động [2].…”
Section: Giới Thiệuunclassified