Abstrak : Kebutuhan inovasi skema pendinginan untuk pemeliharaan perangkat elektronik dengan suhu aman dibawah batas yang telah ditentukan oleh batasan material dan kendala realibilitas yang terkait pada miniaturisasi microchip yang agresif pada komponen elektronik. Pergeseran dari ketergantungan pada sistem berpendingin kipas menjadi ke skema pendinginan yang memanfaatkan pendingin cairan dielektrik menggunakan berbagai skema pendinginan fase tunggal. Perekayasa (engineer) sistem pendingin memusatkan perhatian pada skema pendinginan dua fase, untuk memanfaatkan kedua system pendingin. Sifat yang harus dimiliki perekayasa sistem pendingin ini yaitu konveksi fluida dan panas laten untuk memindahkan jumlah kalor yang jauh lebih besar dari pada skema fase tunggal, sambil mempertahankan suhu perangkat yang lebih rendah. Beberapa skema pendingin cairan dua fase telah direkomendasikan untuk menghilangkan fluks kalor tinggi dari perangkat yang digunakan diaplikasi. Momentum droplet memungkinkan cairan menembus penghalang uap yang dibuat oleh gelembung nukleasi dan secara lebih efektif mengisi kembali permukaan, keduanya sangat bermanfaat untuk pendinginan fluks tinggi. Pada model dan simulasi pengembangan droplet menggunakan metode LBM multi fase, parameter penting yang selalu didapatkan adalah arus semu maksimum (maximum spurious currents) yang menetukan stabilitas komputasi.
Kata kunci : Modeling Matematis, Simulasi Droplet, Metode Latice-Boltzman
Abstract: The need for innovative cooling schemes for maintaining electronic devices with safe temperatures below predetermined limits by material limitations and reliability constraints associated with aggressive microchip miniaturization of electronic components. Shifting from reliance on fan-cooled systems to cooling schemes that utilize dielectric liquid cooling using a variety of single-phase cooling schemes. The cooling system engineer focuses on two-phase cooling schemes, to take advantage of both cooling systems. Properties that these cooling system engineers must possess are fluid convection and latent heat to transfer a much greater amount of heat than a single-phase scheme, while maintaining a lower device temperature. Several two-phase liquid cooling schemes have been recommended to remove the high heat flux from the apparatus used in the application. The droplet momentum allows the liquid to penetrate the vapor barrier created by the nucleation bubbles and more effectively replenish the surface, both of which are very beneficial for high flux cooling. In droplet development models and simulations using the multi-phase LBM method, an important parameter that is always obtained is the maximum spurious currents which determine the computational stability.
Keywords: Mathematical Modeling, Droplet Simulation, Latice-Boltzman Method