The value of computational modelling in improving our understanding of complex nutrient-based pathways is becoming increasingly recognised. This is due to the integral role that computer modelling is playing within the multidisciplinary field of systems biology, where in silico quantitative simulations are being used to compliment more traditional wet-laboratory investigations. A large number of computational models are accessible via the Biomodels database, an archive of openly available peer reviewed models of biological systems. Moreover, there has been an explosion in the availability of free modelling software tools that can be used to assemble and simulate the dynamic behaviour of nutrient mediated systems. Computational modelling will continue to play an increasingly significant role in nutrition research. Thus, it is important that freely accessible models and resources relevant to nutrition research are highlighted. In response to these needs, we firstly examined the Biomodels database, to identify and categorise nutrition themed models. The outcome of the analysis revealed 163 nutrition themed models. These models are mainly cellular in nature, with intracellular representations of calcium oscillations the most common. Secondly, a generic nutrition centred modelling framework was used, to explore recent advances, data repositories and software relevant to model building. We conclude this paper by using our review findings to discuss areas of nutrition that could further exploit the potential of computational modelling in the future. As a result of the progress in nutrient centred systems modelling it is important that freely available models, approaches, software and data resources relevant to nutrient focused modelling are highlighted. As a result of these needs, the aim of this paper is to discuss the progress in systems modelling and its relevance to nutrition research. Firstly, we will briefly introduce the main modelling approaches. We then highlight openly accessible nutrient themed models archived within the Biomodels database http://www.ebi.ac.uk/biomodels-main/ a repository for published peer reviewed models [22]. These models have been encased within the System Biology Markup Language (SBML) http://sbml.org/Main_Page a format used for model exchange [23]. We recognise that several formats exist for exchanging computational models, including the Cell Mark-up language (Cell-ML) [24] and the recently developed simulation experiment description markup language (SED-ML) [25], which also supports SBML. However, the rationale for focusing on SBML is because it is currently the leading exchange format in Systems Biology. This is emphasized by the results of a search of PubMed and Biomodels for models or tools published in each year since SBML was launched in 2003. The search terms SBML/ systems biology markup language were used to search for publications archived in PubMed. Biomodels was then used to crosscheck for models not revealed by the PubMed search. Figure 1 provides a summary of this ...