Hot spot often occurs in a module when the qualities of solar cells mismatch and bypass diodes are proved to be an efficient alternative to reduce the effect of hot spot. However, these principles choosing a diode are based on the parameters of bypass diodes and PV cells without consideration of the maximum heating power of the shaded cell, which may cause serious consequences. On this basis, this paper presents a new approach to investigate partially shaded cells in different numbers of PV cells and different shading scenarios, including inhomogeneous illumination among solar cells and incomplete shading in one cell, which innovatively combines the same cells or divides one affected cell into many small single cells and then combines the same ones, and analyzes the shaded cell. The results indicate that the maximum power dissipation of the shaded cell occurs at short-circuit conditions. With the number of solar cells increasing, the shaded cell transfers from generating power to dissipating power and there is a maximum point of power dissipation in different shading situations that may lead to severe hot spot. Adding up the heat converted from solar energy, the heating power can be higher. In this case, some improvements about bypass diodes are proposed to reduce hot spot.