In many organisms, most notably Drosophila, homologous chromosomes in somatic cells associate with each other, a phenomenon known as somatic homolog pairing. Unlike in meiosis, where homology is read out at the level of DNA sequence complementarity, somatic homolog pairing takes place without double strand breaks or strand invasion, thus requiring some other mechanism for homologs to recognize each other. Several studies have suggested a "specific button" model, in which a series of distinct regions in the genome, known as buttons, can associate with each other, presumably mediated by different proteins that bind to these different regions. Here we consider an alternative model, which we term the "button barcode" model, in which there is only one type of recognition site or adhesion button, present in many copies in the genome, each of which can associate with any of the others with equal affinity. An important component of this model is that the buttons are non-uniformly distributed, such that alignment of a chromosome with its correct homolog, compared with a non-homolog, is energetically favored; since to achieve nonhomologous alignment, chromosomes would be required to mechanically deform in order to bring their buttons into mutual register. We investigated several types of barcodes and examined their effect on pairing fidelity. We found that high fidelity homolog recognition can be achieved by arranging chromosome pairing buttons according to an actual industrial barcode used for warehouse sorting. By simulating randomly generated non-uniform button distributions, many highly effective button barcodes can be easily found, some of which achieve virtually perfect pairing fidelity. This model is consistent with existing literature on the effect of translocations of different sizes on homolog pairing. We conclude that a button barcode model can attain highly specific homolog recognition, comparable to that seen in actual cells undergoing somatic homolog pairing, without the need for specific interactions. This model may have implications for how meiotic pairing is achieved.