This paper explores ways in which civil conflict can be simulated using numerical methods. A general two-party model of conflict is developed by extending an approach proposed by [Christia, F., (2012), Alliance Formation in Civil Wars, Cambridge University Press, New York], which is based on a metric of the 'relative power' that exists between the state and a rebel group. Various definitions of relative power are considered and one of these is chosen to illustrate different types of two-sided armed conflict, namely direct-fire, guerrilla and asymmetric warfare. The additional suggestion of Christia that random or stochastic events can lead to unexpected conflict outcomes is also further extended in this paper. The inclusion in the model of terms describing concurrent rebel recruitment of civilians and state deployment of troops are then described. Examples are presented for various hypothetical cases. It is demonstrated that numerical simulation techniques have great potential for modelling civil war. The Christia approach is shown to provide an excellent basis from which numerical models of civil conflict can be built and from which the progress of a conflict can usefully be visualised graphically.