Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The present research compares a machine learning model with a statistical model, with specific emphasis on artificial neural networks and multiple linear regression models. The aim of this study is to forecast the thermal transmittance of a plain-woven cotton fabric using input data such as thread density measured in ends per inch, picks per inch, and fabric thickness. The artificial neural network is built using a network with feed-forward backpropagation, and the MATLAB software’s training function trainlm is used to modify its weight and basic values based on Levenberg–Marquardt optimization techniques. The sigmoid transfer function is used to set the layer output and measure network performance in terms of the root mean squared error, mean absolute error percentage, and coefficient of determination which were determined. For the artificial neural network prediction model, the root mean squared error and mean absolute error percentage were 1.05 and 3.132%, respectively, while the coefficient of determination was 0.9307. In contrast, the multiple linear regression prediction model had root mean squared error and mean absolute error percentage values of 2.98 and 8.97%, respectively, along with a coefficient of determination of 0.4727. The results reveal that the artificial neural network model outperforms the multiple linear regression model, showing superior accuracy and robustness in capturing the intricate interactions between important fabric parameters (ends per inch, picks per inch, and thickness) and thermal transmittance values. This research emphasizes the efficiency of artificial neural network modeling as a superior tool for forecasting thermal transmittance in textile applications rather than employing the time-consuming trial-and-error process for delivering significant insights for material engineering and energy-efficient design.
The present research compares a machine learning model with a statistical model, with specific emphasis on artificial neural networks and multiple linear regression models. The aim of this study is to forecast the thermal transmittance of a plain-woven cotton fabric using input data such as thread density measured in ends per inch, picks per inch, and fabric thickness. The artificial neural network is built using a network with feed-forward backpropagation, and the MATLAB software’s training function trainlm is used to modify its weight and basic values based on Levenberg–Marquardt optimization techniques. The sigmoid transfer function is used to set the layer output and measure network performance in terms of the root mean squared error, mean absolute error percentage, and coefficient of determination which were determined. For the artificial neural network prediction model, the root mean squared error and mean absolute error percentage were 1.05 and 3.132%, respectively, while the coefficient of determination was 0.9307. In contrast, the multiple linear regression prediction model had root mean squared error and mean absolute error percentage values of 2.98 and 8.97%, respectively, along with a coefficient of determination of 0.4727. The results reveal that the artificial neural network model outperforms the multiple linear regression model, showing superior accuracy and robustness in capturing the intricate interactions between important fabric parameters (ends per inch, picks per inch, and thickness) and thermal transmittance values. This research emphasizes the efficiency of artificial neural network modeling as a superior tool for forecasting thermal transmittance in textile applications rather than employing the time-consuming trial-and-error process for delivering significant insights for material engineering and energy-efficient design.
A four node isoparametric shell element (Q4) based on Mindlin/Reissner plate theory and the alpha finite element method (αFEM) was formulated for a nearly exact solution of linear static and buckling analysis of textile-like sheet material. The novel idea of αFEM-Q4 is assumed to be similar to the framework of conventional finite element approaches for Q4, but the gradient of strains is scaled by a factor α ∈ [0, 1]. The numerical examples demonstrate that the αFEM-Q4 can improve the accuracy of FEM solution in static and buckling analysis shell structures of non-woven fabric. However, the αFEM-Q4 cannot provide the nearly exact solution to all elasticity problems. In addition, it also requires a quadrilateral mesh that cannot be fully generated by common geometric algorithms for complicated problem domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.