Helsing, Joseph Edward. Validation and Evaluation of Emergency Response Plans through Agent-Based Modeling and Simulation. Doctor of Philosophy (Computer Science and Engineering), May 2018, 103 pp., 12 tables, 54 figures, 66 numbered references. Biological emergency response planning plays a critical role in protecting the public from possible devastating results of sudden disease outbreaks. These plans describe the distribution of medical countermeasures across a region using limited resources within a restricted time window. Thus, the ability to determine that such a plan will be feasible, i.e. successfully provide service to affected populations within the time limit, is crucial. Many of the current efforts to validate plans are in the form of live drills and training, but those may not test plan activation at the appropriate scale or with sufficient numbers of participants. Thus, this necessitates the use of computational resources to aid emergency managers and planners in developing and evaluating plans before they must be used. Current emergency response plan generation software packages such as RE-PLAN or RealOpt, provide rate-based validation analyses. However, these types of analysis may neglect details of real-world traffic dynamics. Therefore, this dissertation presents Validating Emergency Response Plan Execution Through Simulation (VERPETS), a novel, computational system for the agent-based simulation of biological emergency response plan activation. This system converts raw road network, population distribution, and emergency response plan data into a format suitable for simulation, and then performs these simulations using SUMO, or Simulations of Urban Mobility, to simulate realistic traffic dynamics. Additionally, high performance computing methodologies were utilized to decrease agent load on simulations and improve performance. Further strategies, such as use of agent scaling and a time limit on simulation execution, were also examined. Experimental results indicate that the time to plan completion, i.e. the time when all individuals of the population have received medication, determined by VERPETS aligned well with current alternate methodologies. It was determined that the dynamic of traffic congestion at the POD itself was one of the major factors affecting the completion time of the plan, and thus allowed for more rapid calculations of plan completion time. Thus, this system provides not only a novel methodology to validate emergency response plans, but also a validation of other current strategies of emergency response plan validation.