Comodulation masking release (CMR) has been attributed to auditory processing within one auditory channel (within-channel cues) and/or across several auditory channels (across-channel cues). The present flanking-band (FB) experiment-using a 25-Hz-wide on-frequency noise masker (OFM) centered at the signal frequency of 10 kHz and a single 25-Hz-wide noise FB-was designed to separate the amount of CMR due to within-and across-channel cues and to investigate the role of temporal cues on the size of within-channel CMR. The results demonstrated within-channel CMR in the Naval Medical Research Institute mouse, while no unambiguous evidence could be found for CMR occurring due to across-channel processing (i.e., "true CMR"). The amount of within-channel CMR was dependent on the frequency separation between the FB and the OFM. CMR increased from 4 to 6 dB for a frequency separation of 1 kHz to 18 dB for a frequency separation of 100 Hz. The large increase for a frequency separation of 100 Hz is likely to be due to the exploitation of changes in the temporal pattern of the stimulus upon the addition of the signal. Temporal interaction between both masker bands results in modulations with a large depth at a modulation frequency equal to the beating rate. Adding a signal to the maskers reduces the depth of the modulation. The auditory system of mice might be able to use the change in modulation depth at a beating frequency of 100 Hz as a cue for signal detection, while being unable to detect changes in modulation depth at high modulation frequencies. These results are consistent with other experiments and model predictions for CMR in humans which suggested that the main contribution to the CMR effect stems from processing of within-channel cues.