A Simple PolyUrethane Foam (SPUF) mass loss and response model has been developed to predict the behavior of unconfined, rigid, closed-cell, polyurethane foam-filled systems exposed to fire-like heat fluxes. The model, developed for the B61 and W80-0/1 fireset foam, is based on a simple two-step mass loss mechanism using distributed reaction rates. The initial reaction step assumes that the foam degrades into a primary gas and a reactive solid. The reactive solid subsequently degrades into a secondary gas. The SPUF decomposition model was implemented into the finite element (FE) heat conduction codes COYOTE [1] and CALORE [2], which support chemical kinetics and dynamic enclosure radiation using "element death." A discretization bias correction model was parameterized using elements with characteristic lengths ranging from 1-mm to 1-cm. Bias corrected solutions using the SPUF response model with large elements gave essentially the same results as grid independent solutions using 100-µm elements. The SPUF discretization bias correction model can be used with 2D regular quadrilateral elements, 2D paved quadrilateral elements, 2D triangular elements, 3D regular hexahedral elements, 3D paved hexahedral elements, and 3D tetrahedron elements. Various effects to efficiently recalculate viewfactors were studied -the element aspect ratio, the element death criterion, and a "zombie" criterion. Most of the solutions using irregular, large elements were in agreement with the 100-µm grid-independent solutions. The discretization bias correction model did not perform as well when the element aspect ratio exceeded 5:1 and the heated surface was on the shorter side of the element. For validation, SPUF predictions using various sizes and types of elements were compared to component-scale experiments of foam cylinders that were heated with lamps. The SPUF predictions of the decomposition front locations were compared to the front locations determined from real-time X-rays. SPUF predictions of the 19 radiant heat experiments were also compared to a more complex chemistry model (CPUF) predictions made with 1-mm elements.The SPUF predictions of the front locations were closer to the measured front locations than the CPUF predictions, reflecting the more accurate SPUF prediction of mass loss. Furthermore, the computational time for the SPUF predictions was an order of magnitude less than for the CPUF predictions.
5
AcknowledgementsRobert Kerr provided considerable help in making many of the tetrahedral meshes using CUBIT.Steven W. Bova provided the program to convert HEX elements to TET elements using the same node points. The authors also gratefully acknowledge the technical assistance provided by Steven T. Sorensen and Weston Carter for help with optimization and image processing. Scot Waye