Abstract.Monte Carlo based modelling of the dose distribution in the vicinity of concentrates of iodine (I) and gold (Au) binary radiotherapy agents has been performed for monochromatised synchrotron X-rays. While the KERMA approximation, which ignores electron transport, is often acceptable for kilovoltage X-ray dosimetry in X-ray binary therapy, the range of photoelectrons and Auger electrons may be significant when compared to the microdostributed structure of the binary compound in which case corrections to the approximation may be necessary. Dose is calculated using EGSnrc for microdistributions associated with X-ray radiation synovecotomy, where iodine is taken up in the synovial lining. Dose as a function of the volume of aggregation for an Au-based contrast agent such as Au nanoparticles, ranging in diameter from 5 micron to 100 micron, were calculated using EGSnrc and Penelope, showing that the dose varies slowly for 90 keV X-rays, where much of the dose delivered by short range photoelectrons while 80 keV X-rays, just below the K-edge of Au (80.729 keV) increases linearly with diameter. In general the dose varies slowly as a function of volume suggesting that only small corrections will be needed to account for effects due to the failure of electronic equilibrium.