Modeling EEG Signals for Mental Confusion Using DNN and LSTM With Custom Attention Layer
Raghavendra Ganiga,
Yonggang Kim,
Raj Tulluri
et al.
Abstract:This study explored the impact of confusion on concentration and cognition, emphasizing the importance of detecting and preventing confusion from enhancing learning outcomes. By leveraging electroencephalogram (EEG) data, we proposed a novel deep learning model that uses long short-term memory (LSTM) networks to predict confusion levels in online massive open courses (MOOCs). LSTM's ability to model sequential data such as EEG signals has been harnessed to capture long-term dependencies and temporal dynamics e… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.