Foam generation for gas mobility reduction in porous media is a well-known method and frequently used in field applications. Application of foam in fractured reservoirs has hitherto not been widely implemented, mainly because foam generation and transport in fractured systems are not clearly understood. In this laboratory work, we experimentally evaluate foam generation in a network of fractures within fractured carbonate slabs. Foam is consistently generated by snap-off in the rough-walled, calcite fracture network during surfactant-alternating-gas (SAG) injection and coinjection of gas and surfactant solution over a range of gas fractional flows. Boundary conditions are systematically changed including gas fractional flow, total flow rate, and liquid rates. Local sweep efficiency is evaluated through visualization of the propagation front and compared for pure gas injection, SAG injection, and coinjection. Foam as a mobility-control agent resulted in significantly improved areal sweep and delayed gas breakthrough. Gas-mobility reduction factors varied from approximately 200 to more than 1,000, consistent with observations of improved areal sweep. A shear-thinning foam flow behavior was observed in the fracture networks over a range of gas fractional flows.