The term 'feedback' is used ubiquitously in climate research, but implies varied meanings in different contexts. From a specific process that locally affects a quantity, to a formal framework that attempts to determine a global response to a forcing, researchers use this term to separate, simplify and quantify parts of the complex Earth system. We combine new model results with a historical and educational perspective to organize existing ideas around feedbacks and linear models. Our results suggest that the state- and forcing-dependency of feedbacks are probably not appreciated enough, and not considered appropriately in many studies. A non-constant feedback parameter likely explains some of the differences in estimates of equilibrium climate sensitivity from different methods and types of data. Clarifying the value and applicability of the linear forcing feedback framework and a better quantification of feedbacks on various timescales and spatial scales remains a high priority in order to better understand past and predict future changes in the climate system.