2015
DOI: 10.7763/joebm.2015.v3.269
|View full text |Cite
|
Sign up to set email alerts
|

Modeling Gold Price via Artificial Neural Network

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

2
35
0
4

Year Published

2016
2016
2019
2019

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 64 publications
(44 citation statements)
references
References 18 publications
2
35
0
4
Order By: Relevance
“…An incomplete list includes Harr, Meyer family, Daubechies family, Coiflet family, and Symmlet family [28]. Prior studies [29,30] show that gold has nonlinear multiresolution characteristic in different time scales. Daubechies wavelets are selected in this paper due to their outstanding performance in detecting waveform discontinuities for evaluating the memorial breakpoint [31].…”
Section: Reconstructionmentioning
confidence: 99%
“…An incomplete list includes Harr, Meyer family, Daubechies family, Coiflet family, and Symmlet family [28]. Prior studies [29,30] show that gold has nonlinear multiresolution characteristic in different time scales. Daubechies wavelets are selected in this paper due to their outstanding performance in detecting waveform discontinuities for evaluating the memorial breakpoint [31].…”
Section: Reconstructionmentioning
confidence: 99%
“…La adición del precio del petróleo como entrada mejoró el comportamiento de la RNA, sin embargo, los menores errores se obtuvieron al incluir el índice DXY y el índice S&P500, donde los errores de predicción obtenidos son menores a los reportados por otros trabajos que utilizan los mismos índices de error (Ismail et al, 2009;Mombeini y Yazdani-Chamzini, 2015). Las figuras 4 y 5 muestran una mejor predicción de la RNA con estos últimos índices como entradas.…”
Section: Redes Neuronales Artificiales Aplicadas a La Predicción Del unclassified
“…La principal ventaja de estas redes de encontrar relaciones no lineales entre las variables de entrada y salida, ha fomentado su aplicación en diferentes ramas de la ingeniería y de los mercados financieros; estos últimos caracterizados por su alta volatilidad (García et al, 2008;Martínez, 2014;Villada et al, 2014;Agudelo et al, 2015). Otras referencias han pronosticado el precio del oro, mostrando un mejor rendimiento de las RNA en comparación con series econométricas y modelos lineales (Parisi et al, 2008;Hussein et al, 2011;Mombeini y Yazdani-Chamzini, 2015). En el último de estos trabajos se estudia el comportamiento mensual del precio del metal precioso mediante modelos ARIMA y RNA, encontrando menores errores en la predicción al utilizar el modelo neuronal.…”
Section: Introductionunclassified
“…Domain of Gold price prediction is already rich with various time series models, computational intelligence models and hybrid models. In last few years Artificial neural networks have been appeared as most promising predictor models compared to traditional time series models such as GARCH, EGARCH, GJR-GARCH, ARI-MA and soon [1][2][3]. A prediction model designed with back propagation neural network with an improved EMD online learning is proposed in [4] for gold price forecasting.…”
Section: Introductionmentioning
confidence: 99%