Modeling Groundwater Levels in California's Central Valley by Hierarchical Gaussian Process and Neural Network Regression
Anshuman Pradhan,
Kyra H. Adams,
Venkat Chandrasekaran
et al.
Abstract:Modeling groundwater levels continuously across California's Central Valley (CV) hydrological system is challenging due to low‐quality well data which is sparsely and noisily sampled across time and space. The lack of consistent well data makes it difficult to evaluate the impact of 2017 and 2019 wet years on CV groundwater following a severe drought during 2012–2015. A novel machine learning method is formulated for modeling groundwater levels by learning from a 3D lithological texture model of the CV aquifer… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.