2016
DOI: 10.1139/cjfr-2015-0145
|View full text |Cite
|
Sign up to set email alerts
|

Modeling knot geometry from branch angles in Douglas-fir (Pseudotsuga menziesii)

Abstract: Lumber and veneer recovery from Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees depend on the size and distribution of knots. Two approaches have been used to simulate the effect of knots on recovery of these products: (i) prediction of recovery based on mill studies and (ii) simulated milling of virtual trees. A benefit of the latter approach is that different milling configurations may be tested. Knots in virtual logs are usually based on data from X-ray scanning. A novel approach was used in this s… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
6
1
2

Year Published

2017
2017
2021
2021

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 24 publications
(9 citation statements)
references
References 36 publications
0
6
1
2
Order By: Relevance
“…According to Todoroki (2003), an increase in value may vary between 13% using imprecise data, and up to 26% when applying precise knowledge of the internal knot structure. The use of such information to optimize log grading, as well as the final product value, has been discussed by Berglund et al (2013), Fredriksson (2014), and Oja et al (2010). In addition, knot geometry data can also be employed to build knot models, which aid in stand management decision making, thus enabling the implementation of wood quality-oriented strategies earlier in the wood supply chain.…”
Section: Introductionmentioning
confidence: 99%
“…According to Todoroki (2003), an increase in value may vary between 13% using imprecise data, and up to 26% when applying precise knowledge of the internal knot structure. The use of such information to optimize log grading, as well as the final product value, has been discussed by Berglund et al (2013), Fredriksson (2014), and Oja et al (2010). In addition, knot geometry data can also be employed to build knot models, which aid in stand management decision making, thus enabling the implementation of wood quality-oriented strategies earlier in the wood supply chain.…”
Section: Introductionmentioning
confidence: 99%
“…De acuerdo con Rautiainen y Stenberg (2005) [ 33 ] bastante razonable, al menos en ramas juveniles. Para ramas adultas es probable que el ángulo de inserción aumente como lo señalan Colin y Houllier (1992), Lemieux, Samson y Usenius (1997), Vestøl y Høibø (2001), Trincado y Burkhart (2008) y Osborne y Maguire (2015). El tamaño y peso de las ramas modifica el ángulo de inserción como se deduce de los estudios de Shigo (1986) y Lemieux et al (1997).…”
Section: Discussionunclassified
“…La evaluación de prescripciones silvícolas para especies de alto valor comercial destinadas a uso estructural requiere conocer atributos de ramas como su posición, tamaño, longevidad, mantención y persistencia a lo largo del fuste. Las ramas incluidas en el fuste se convierten en nudos que desde una perspectiva de calidad de madera se consideran como defectos internos (Trincado y Burkhart, 2008;Osborne y Maguire, 2015). Decisiones silvícolas tales como: densidad inicial de plantación y espaciamiento (Amateis, Radtke y Hansen, 2004), raleo (Baldwin et al, 2000), poda (Clark, Saucier, Baldwin y Bower, 1994) y fertilización (Yu, Chambers, Tang y Barnett, 2003) tienen un efecto en el tamaño de las ramas y consecuentemente en la dimensión de los nudos.…”
Section: Introductionunclassified
“…The tight interdependencies between primary and secondary growth are due to the wood formation responding to intrinsic (increasing size) and extrinsic (climate and competition) factors as described in the Introduction. With detailed inputs from TLS point clouds accompanied by wood property references, any of the above-mentioned models could be utilized in translating allometric growth responses into vertical and radial gradients of wood properties such as knottiness, wood density, or fiber properties (Duchateau et al 2013;Eberhardt et al 2019;Ikonen et al 2003;Mäkelä et al 2010;Mäkinen et al 2020;Moberg 2006;Osborne and Maguire 2016) (Figures 1 and 4).…”
Section: Applications In the Modeling Of Wood Properties And Wood Quamentioning
confidence: 99%
“…Establishing databases that combine detailed morphological tree traits from standing timber, bucking data from harvesters, and wood quality data from sawmills would enable reconstructions of virtual sawlogs that are used to optimize the secondary log breakdown, or sawing. Using stem taper, branching, and knot shape models, comprehensive reconstructions of interior knot structures were previously demonstrated (Duchateau et al 2013;Osborne and Maguire 2016). TLS provides an excellent instrument for obtaining the calibration data from standing timber (Figure 4).…”
Section: Applications In the Modeling Of Wood Properties And Wood Quamentioning
confidence: 99%