In this study, we examined the effects of dissolved oxygen, via metrics based on hourly measurements, and other environmental variables on invertebrate assemblages in estuaries spanning a gradient of nutrient loading and geography in the southern Gulf of St. Lawrence, Canada. Upper areas (15-25 practical salinity units (PSU)) of 13 estuaries that were dominated by either seagrass (Zostera marina Linnaeus, 1753) or macroalgae (Ulva spp. Linnaeus, 1753) were sampled from June to September 2013. Macroinvertebrate assemblages from Z. marina were found to be distinct from Ulva assemblages for both epifauna and infauna. Small snails dominated each vegetation type, specifically cerithids in Z. marina and hydrobids in Ulva. Although Z. marina had higher species richness, approximately 70% of species were common to both habitats. Faunal communities differed among estuaries with large, within-estuary, temporal variance only observed at Ulva sites impacted by hypoxia and particularly at sites with long water residence time. Indeed, abundances varied by several orders of magnitude in Ulva ranging from zero to thousands of macroinvertebrates. There was a strong negative correlation between hypoxic or anoxic water, 48 h prior to sampling, with relative abundances of amphipods, and a positive correlation with the relative abundances of snails. As one of the first studies to use high-frequency oxygen monitoring, this study revealed probable impacts and the transient nature of hypoxia in eutrophication.