The collection of time series data increases as more monitoring and
automation are being deployed. These deployments range in scale from an
Internet of things (IoT) device located in a household to enormous distributed
Cyber-Physical Systems (CPSs) producing large volumes of data at high velocity.
To store and analyze these vast amounts of data, specialized Time Series
Management Systems (TSMSs) have been developed to overcome the limitations of
general purpose Database Management Systems (DBMSs) for times series
management. In this paper, we present a thorough analysis and classification of
TSMSs developed through academic or industrial research and documented through
publications. Our classification is organized into categories based on the
architectures observed during our analysis. In addition, we provide an overview
of each system with a focus on the motivational use case that drove the
development of the system, the functionality for storage and querying of time
series a system implements, the components the system is composed of, and the
capabilities of each system with regard to Stream Processing and Approximate
Query Processing (AQP). Last, we provide a summary of research directions
proposed by other researchers in the field and present our vision for a next
generation TSMS.Comment: 20 Pages, 15 Figures, 2 Tables, Accepted for publication in IEEE TKD