Abstract. Linear regression analysis is a technique in statistics to form a model of the relationship between response variables with one or more predictor variables, but linear regression becomes less specific if the data used has a location aspect because the modeling does not take into account the proximity factor between regions. Therefore there was a development of linear regression into spatial regression where the location aspect is also considered, one of the spatial regression analysis is spatial Durbin Model (SDM) or a type of spatial regression analysis that considers the influence of the proximity of the region on the response variables and predictor variables. In this study, life expectancy modeling will be carried out to determine the factors that affect life expectancy in West Java province in 2021 with the predictive variables being the average length of school, the percentage of households behaving clean and healthy, the number of Posyandu, the percentage of poor people and adjusted per capita expenditure. From the results of the study, the factors that have a significant effect on life expectancy are the average length of schooling and the percentage of adjusted per capita expenditure, with the value of the coefficient of determination (R2) is 73.002 % which can be interpreted that the life expectancy model in West Java in 2021 can be explained by the model of 73.002%, while.
Abstrak. Analisis regresi linier adalah teknik dalam statistika untuk membentuk model hubungan antara variabel respon dengan satu atau lebih variabel prediktor, namun regresi linier menjadi kurang spesifik jika data yang digunakan memiliki aspek lokasi karena dalam pemodelannya tidak memperhitungkan faktor kedekatan antar wilayah. Oleh karena itu terjadilah pengembangan regresi linier menjadi regresi spasial dimana aspek lokasi juga ikut diperhatikan, salah satu analisis regresi spasial adalah Spatial Durbin Model (SDM) atau jenis analisis regresi spasial yang memperhatikan pengaruh kedekatan daerah pada variabel respon maupun variabel prediktornya. Pada penelitian ini akan dilakukan pemodelan Umur Harapan Hidup untuk mengetahui faktor-faktor yang mempengaruhi Umur Harapan Hidup yang ada di provinsi Jawa Barat pada tahun 2021 dengan variabel predikornya adalah Rata-rata Lama Sekolah, Persentase Rumah Tangga Berperilaku Hidup Bersih dan Sehat, Jumlah Posyandu, Persentase Jumlah Penduduk Miskin dan Pengeluaran Perkapita yang Disesuaikan. Dari hasil penelitian, faktor-faktor yang berpengaruh signifikan terhadap umur harapan hidup adalah rata-rata lama sekolah dan persentase pengeluaran perkapita yang disesuaikan, dengan nilai koefisien determinasi (R2) adalah 73,002 % yang dapat diartikan bahwa model umur harapan hidup di Jawa Barat tahun 2021 dapat dijelaskan oleh model sebesar 73,002%, sedangkan sisanya 26.998% dijelaskan oleh variabel lain diluar model.