The growing use of ionizing radiation (IR)-based diagnostic and treatment methods has been linked to increasing chronic diseases among patients and healthcare professionals. However, multiple factors such as IR dose, dose-rate, and duration of exposure influence the IR-induced chronic effects. The predicted links between low-dose ionizing radiation (LDIR) and health risks are controversial due to the non-availability of direct human studies. The studies pertaining to LDIR effects have importance in public health as exposure to background LDIR is routine. It has been anticipated that data from epidemiological and clinical reports and results of preclinical studies can resolve this controversy and help to clarify the notion of LDIR-associated health risks. Accumulating scientific literature shows reduced cancer risk, cancer-related deaths, curtailed neuro-impairments, improved neural functions, and reduced diabetes-related complications after LDIR exposure. In addition, it was found to alter evolutionarily conserved stress response pathways. However, the picture of molecular signaling pathways in LDIR responses is unclear. Besides, there is limited/no information on biomarkers of epidemiological LDIR exposure. Therefore, the present review discusses epidemiological, clinical, and preclinical studies on LDIR-induced positive effects in three chronic diseases (cancer, dementia, and diabetes) and their associated molecular mechanisms. The knowledge of LDIR response mechanisms may help to devise LDIR-based therapeutic modalities to stop disease progression. Modulation of these pathways may be helpful in developing radiation resistance among humans. However, more clinical evidence with additional biochemical, cellular, and molecular data and exploring the side effects of LDIR are the major areas of future research.
Supplementary Information
The online version contains supplementary material available at 10.1007/s11033-022-08211-5.