2022
DOI: 10.48550/arxiv.2205.04868
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Modeling nonlocal behavior in epidemics via a reaction-diffusion system incorporating population movement along a network

Abstract: The outbreak of COVID-19, beginning in 2019 and continuing through the time of writing, has led to renewed interest in the mathematical modeling of infectious disease. Recent works have focused on partial differential equation (PDE) models, particularly reaction-diffusion models, able to describe the progression of an epidemic in both space and time. These studies have shown generally promising results in describing and predicting COVID-19 progression. However, people often travel long distances in short perio… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 30 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?