2019
DOI: 10.3390/f11010011
|View full text |Cite
|
Sign up to set email alerts
|

Modeling of Aboveground Biomass with Landsat 8 OLI and Machine Learning in Temperate Forests

Abstract: An accurate estimation of forests’ aboveground biomass (AGB) is required because of its relevance to the carbon cycle, and because of its economic and ecological importance. The selection of appropriate variables from satellite information and physical variables is important for precise AGB prediction mapping. Because of the complex relationships for AGB prediction, non-parametric machine-learning techniques represent potentially useful techniques for AGB estimation, but their use and comparison in forest remo… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

1
28
1
8

Year Published

2020
2020
2024
2024

Publication Types

Select...
8

Relationship

1
7

Authors

Journals

citations
Cited by 62 publications
(38 citation statements)
references
References 86 publications
1
28
1
8
Order By: Relevance
“…Most of them are from visible and NIR bands, such as the ratio vegetation index (RVI), NDVI, soil-adjusted vegetation index (SAVI), modified soil-adjusted vegetation index (MSAVI), and optimized soil-adjusted vegetation index (OSAVI). The SWIR spectral band is one of the most important variables in predicting AGB [64][65][66], and spectral indices containing SWIR have stronger relationships with AGB [67,68] under complex forest structures. Thus, some spectral indices derived from SWIR were also calculated.…”
Section: Modis Potential Variable Predictors Of Acdmentioning
confidence: 99%
“…Most of them are from visible and NIR bands, such as the ratio vegetation index (RVI), NDVI, soil-adjusted vegetation index (SAVI), modified soil-adjusted vegetation index (MSAVI), and optimized soil-adjusted vegetation index (OSAVI). The SWIR spectral band is one of the most important variables in predicting AGB [64][65][66], and spectral indices containing SWIR have stronger relationships with AGB [67,68] under complex forest structures. Thus, some spectral indices derived from SWIR were also calculated.…”
Section: Modis Potential Variable Predictors Of Acdmentioning
confidence: 99%
“…In the past, many studies have been carried out using both linear and non-linear modeling approaches [57][58][59]. In many cases, it was found that when the prediction models become too complex, they operate with statistically insignificant predictor variables [60][61][62]. In such cases, selecting suitable variables is of prime importance to reduce the number of model parameters and thus to increase the generalization of a model.…”
Section: Introductionmentioning
confidence: 99%
“…De acuerdo con Herold et al (2011) existe un particular interés en el manejo forestal del uso de sensores remotos para la estimación de atributos forestales, ya que favorecen la obtención de datos consistente, actualizada y espacialmente explícita en áreas de difícil acceso y con amplia cobertura. Al respecto, la estimación de parámetros forestales a partir de la combinación del uso de sensores remotos y de sitios de campo georreferenciados (sitios permanentes) se han convertido en técnicas útiles y confiables para estimar variables como el volumen forestal, el área basal y la biomasa forestal aérea (Hernández-Ramos et al, 2020;López-Serrano et al, 2020).…”
Section: Introductionunclassified
“…Con base en esas tecnologías, dicha actividad se realiza de manera indirecta con el uso de técnicas estadísticas robustas bajo el supuesto de una alta correlación entre datos satelitales y datos del inventario tradicional (Aguirre-Salado et al, 2011;Song, 2013;Wulder et al, 2014;Acosta et al, 2017;López-Serrano et al, 2020).…”
Section: Introductionunclassified
See 1 more Smart Citation