Wide stiffened aluminium panels are extensively used in aerospace, marine, and civil industries due to their light-weight structure and high stiffness. In this paper, a wide stiffened aluminium panel was manufactured using the principle of the multi-container extrusion, and a comparative study was conducted using two different die designs at the same extrusion condition, in which metal flow behaviour, extrusion force, welding quality, and billet material utilisation have been investigated numerically. Additionally, the effect of extrusion speed on the extrusion process was evaluated with the modified design. It was shown that, compared with the initial design, better metal flow behaviour can be obtained in the modified design. Multi-container extrusion greatly reduces the extrusion force, and the modified design results in a more uniform extrusion force for each extrusion container. The total extrusion force for the modified design is slightly higher compared with the initial die design, due to the increased friction in the upper die channels and the second-step welding chamber. Besides, the modified design of the multi-container extrusion can obtain better welding quality evaluated by different welding criteria, and the extrusion speed has a minor effect on the welding quality. The most notable feature is that the modified design greatly improves the material utilisation, which could save 39.5% material compared to the initial design.