Fitness-for-service evaluations of engineered components that are subject to environment assisted cracking (EAC) often require analyses of potentially large crack extensions through regions of variable stress intensity. However, there are few EAC data and models that directly address the effects of variable stress intensity factor on EAC crack growth. The model developed here is used to evaluate stress corrosion cracking (SCC) data that were obtained on a highstrength beta-titanium alloy under conditions of variable crack mouth opening displacement (CMOD) rate. SCC of this Ti alloy in ambient temperature, near-neutral NaCl aqueous solution is thought to be due to hydrogen environment assisted cracking (HEAC). As the model equations developed here do not admit to a closed form solution for crack velocity as a function of applied stress intensity factor, K, a semiquantitative graphical solution is used to rationalize the crack growth data. The analyses support a previous suggestion that the observed crack growth rate behavior can be attributed to the effect of crack tip strain rate on rates of mechanical disruption and repair of an otherwise protective crack tip oxide film. Model elements introduced here to HEAC modeling include (1) an expression relating corrosion-active surface area to crack tip strain rate and repassivation rate, (2) an expression relating the critical grain boundary hydrogen to the applied stress intensity factor, and (3) an expression relating CTSR to both applied and crack advance strain rate components. Intergranular crack advance is modeled assuming diffusive segregation of corrosion-generated hydrogen to grain boundary trap sites causing embrittlement of the fracture process zone (FPZ). The model equations developed here provide a quantitative basis for understanding the physical significance of K-variation effects and, with additional development, will provide an engineering tool for analysis of crack growth in a variable K field.