An important element in the correct operation of the rolling mill is appropriate planning of the condition of the rolls because this factor constitutes a limiting element in the production process. In this work, with the aim of indicating the method of proper use of production tools–metallurgical rollers during their operation in a Polish rolling mill, the wear and tear of particular kinds of rollers built in the whole rolling set was determined. For this purpose, data were collected at the strip mill from grinding processes, production reports and roll files, while our statistical analysis, laboratory calculations and measurements were used. These data were used to perform computer calculations on the service life of metallurgical rollers installed in the rolling line. Wear mechanisms were identified in industrial practice. The characteristic features of roller wear were investigated using non-destructive tests, including eddy currents. The laboratory tests reproduced the wear mechanisms in very hot rolling rolls. The statistical method for determining the service life of working rolls indicated that their reconstruction is determined both by natural physical phenomena and inappropriate use in about 30% of cases, mainly in the F5 and F6 cages of the finishing unit. Calculations indicated the possibility of replacing the working rolls made of high chromium cast iron Hi-Cr with those made of HSS in the F5 and F6 cages, which will contribute to an increase in the durability of the rolls, a reduction in production costs and a decrease in the number of roll rebuildings. The service life of HSS rolls is 14,000–20,000 Mg of rolled material per 1 mm of wear on its surface in the radial direction, compared to 2000 Mg for rolls made of high chromium cast iron Hi-Cr. The constructed model may be a source of information for further analyses and decision-making processes supporting the management of metallurgical enterprises. On the basis of the constructed model, it was shown that the analyzed projects, depending on their type and technical specification, will bring measurable economic benefits in the form of reduced annual energy consumption and environmental benefits in the form of reduced carbon dioxide emissions into the atmosphere. The constructed model of the roll consumption, verified in the real conditions of the rolling mills, will contribute to the fulfillment of energy and emission obligations with the EU.