-The results of two-dimensional mathematical modeling of heat and mass transfer in a highly viscous hydrocarbon liquid by inductive and radio-frequency (RF) electromagnetic (EM) heating are presented. The model takes into account the dependence of the liquid's viscosity and thermal conductivity on the temperature and also the presence of thermal convection effects. It is shown that the occurrence of volumetric heat sources inside the liquid caused by EM radiation yields an intensive deep heating as compared with inductive heating. Numerical calculations show that, in both these cases, the single vortex flow structure is formed in the whole volume of the liquid. However, RF EM heating provides a more homogeneous distribution of heat in the medium and requires three-fold less power consumption in comparison with induction heating.