Modeling of Particulate Pollutants Using a Memory-Based Recurrent Neural Network Implemented on an FPGA
Julio Alberto Ramírez-Montañez,
Jose de Jesús Rangel-Magdaleno,
Marco Antonio Aceves-Fernández
et al.
Abstract:The present work describes the training and subsequent implementation on an FPGA board of an LSTM neural network for the modeling and prediction of the exceedances of criteria pollutants such as nitrogen dioxide (NO2), carbon monoxide (CO), and particulate matter (PM10 and PM2.5). Understanding the behavior of pollutants and assessing air quality in specific geographical regions is crucial. Overexposure to these pollutants can cause harm to both natural ecosystems and living organisms, including humans. Theref… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.