In assessing of the effect of redundant strain factor on the microstructure inhomogeneity of the drawn wire after annealing, the Upper Bound Model based on spherical velocity field and a computer simulation based on Monte Carlo Model are utilized. Using the models, the strain, stored energy due to deformation and grain size distribution of the wires after different deformation and annealing conditions are calculated. From the achieved results the deformation and microstructure inhomogeneity are computed. It is observed that the deformation inhomogeneity as well as microstructure inhomogeneity is increased with increasing the parameter and redundant strain factor. Also, the results show that in the longer annealing time, the lower microstructure inhomogeneity is achieved. Moreover, the results of modeling are compared with the experimental data and a good agreement is obtained between those.