Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The key objective of this study is to determine the effect of interphase boundaries, the formation of which is caused by the variation of Li2ZrO3/MgLi2ZrO4 phases in lithium-containing ceramics based on lithium metazirconate, on the resistance to near-surface layer destruction processes associated with irradiation with He2+ ions. During the observation of the deformation effects that have an adverse impact on the volumetric swelling of the near-surface layers of ceramics, the thermal expansion factor caused by high-temperature irradiation was considered, simulating conditions as close as possible to the operating conditions of these materials as blankets for tritium propagation. During the studies conducted, it was established that an elevation in the contribution of MgLi2ZrO4 in the composition of ceramics leads to a rise in resistance to deformation swelling caused by structural distortions of the crystal lattice, due to a decrease in the effect of thermal expansion, alongside the presence of interphase boundaries. The established dependencies of the change in the hardness of the near-surface layer of the studied ceramics made it possible to establish the kinetics of softening caused by the deformation distortion of the crystalline structure, as well as to determine the relationship between volumetric swelling and softening (change in hardness) and a decrease in crack resistance (change in the value of resistance to single compression).
The key objective of this study is to determine the effect of interphase boundaries, the formation of which is caused by the variation of Li2ZrO3/MgLi2ZrO4 phases in lithium-containing ceramics based on lithium metazirconate, on the resistance to near-surface layer destruction processes associated with irradiation with He2+ ions. During the observation of the deformation effects that have an adverse impact on the volumetric swelling of the near-surface layers of ceramics, the thermal expansion factor caused by high-temperature irradiation was considered, simulating conditions as close as possible to the operating conditions of these materials as blankets for tritium propagation. During the studies conducted, it was established that an elevation in the contribution of MgLi2ZrO4 in the composition of ceramics leads to a rise in resistance to deformation swelling caused by structural distortions of the crystal lattice, due to a decrease in the effect of thermal expansion, alongside the presence of interphase boundaries. The established dependencies of the change in the hardness of the near-surface layer of the studied ceramics made it possible to establish the kinetics of softening caused by the deformation distortion of the crystalline structure, as well as to determine the relationship between volumetric swelling and softening (change in hardness) and a decrease in crack resistance (change in the value of resistance to single compression).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.