In the context of the Paris Agreement, and considering the importance of methane emissions from cattle in West Africa, application of a Tier 2 method to estimate enteric methane emission factors is clearly pertinent. The current study has two purposes. Firstly, it aims to detect how much each input parameter contributes to the overall uncertainty of enteric methane emission factors for cattle. Secondly, it aims to identify which input parameters require additional research efforts for strengthening the evidence base, thus reducing the uncertainty of methane enteric emission factors. Uncertainty and sensitivity analysis methodologies were applied to input parameters in the calculation of enteric methane emission factors for lactating cows and adult male Senegalese native cattle using the IPCC Tier 2 model. The results show that the IPCC default input parameters, such as the coefficient for calculating net energy for maintenance (Cfi), digestible energy (DE) and the methane conversion rate (Ym) are the first, second and third most important input parameters, respectively, in terms of their contribution to uncertainty of the enteric methane emission factor. Sensitivity analysis demonstrated that future research in Senegal should prioritize the development of Ym, Cfi and DE in order to estimate enteric methane emission factors more accurately and to reduce the uncertainty of the national agricultural greenhouse gas inventory.