Industrial ovens consume a considerable amount of energy and have a significant impact on product quality; therefore, improving ovens should be an important objective for manufacturers. This paper presents a novel and practical approach to oven improvement that emphasises both energy reduction and enhanced process performance. The three-phased approach incorporates product understanding, process improvement and process parameter optimisation. Cure understanding is developed using Dynamic Mechanical Analysis (DMA) and CIE-Lch colour tests, which together highlight the impact of temperature variation on cure conversion and resulting product quality. Process improvement encompasses thermodynamic modelling of the oven air to evaluate the impact of insulation on temperature uniformity and system responsiveness. Finally, process parameters, such as temperature, pressure negativity and air flow, are optimised to reduce energy consumption. The methodology has been effectively demonstrated for a 1 MW festoon oven, resulting in an 87.5 % reduction in cooling time, saving 202 h of annual downtime and a reduction in gas consumption by 20-30 %.