The patterns of formation and development of defects in critical metal parts and elements of mechanical engineering, including power plants and heat engines of various classes, have been studied. The issues of dynamic processes of development of micro- and nanojointing structures of a fractal type from stress points in the solid material/metal of the internal chamber with the working substance of energy devices under conditions of different modes of their functioning are considered. At the same time, regularity, determinism and stochasticity can be realized according to various well-known scenarios, which is illustrated by the example of a number of modes. The possibility of dislocation development and reversibility of such processes, such as the formation of inhomogeneities and cracks, is also discussed. The modifications and development of the 3D fractured structure in the material are analyzed using simple analytical relations with the corresponding topological mappings inside the material with the emergence of fractal objects on the surface of the chamber. Although the analysis carried out is a model in the general formulation with known representation algorithms, nevertheless it is based on relevant physical principles and has obvious practical significance in terms of determining trends and directions for assessing the reliability and durability of such installations. All this makes it possible to qualitatively assess the trend in the development of instabilities and defects, which can eventually lead to the destruction of the solid-state working chamber of various power plants. The availability of a reliable database of their characteristics and operating modes of the working substance in real conditions with numerical parameters should allow, within the framework of the considered concepts, to fulfil predictive modeling and prediction of the durability of safe and stable operation of such devices and control their modes, taking into account appropriate metrological support.