Advancements with cost-effective, high-throughput omics technologies have had a transformative effect on both fundamental and translational research in the medical sciences. These advancements have facilitated a departure from the traditional view of human red blood cells (RBCs) as mere carriers of hemoglobin, devoid of significant biological complexity. Over the past decade, proteomic analyses have identified a growing number of different proteins present within RBCs, enabling systems biology analysis of their physiological functions. Here, we introduce RBC-GEM, the most extensive and meticulously curated metabolic reconstruction of a specific human cell type to-date. It was developed through meta-analysis of proteomic data from 28 studies published over the past two decades resulting in a RBC proteome composed of more than 4,600 distinct proteins. Through workflow-guided manual curation, we have compiled the metabolic reactions carried out by this proteome. RBC-GEM is hosted on a version-controlled GitHub repository, ensuring adherence to the standardized protocols for metabolic reconstruction quality control and data stewardship principles. This reconstruction of the RBC metabolic network is a knowledge base consisting of 718 genes encoding proteins acting on 1,590 unique metabolites through 2,554 biochemical reactions: a 700% size expansion over its predecessor. This reconstruction as an up-to-date curated knowledge base can be used for contextualization of data and for the construction of a computational whole-cell model of a human RBC.