2024
DOI: 10.1145/3639293
|View full text |Cite
|
Sign up to set email alerts
|

Modeling Shifting Workloads for Learned Database Systems

Peizhi Wu,
Zachary G. Ives

Abstract: Learned database systems address several weaknesses of traditional cost estimation techniques in query optimization: they learn a model of a database instance, e.g., as queries are executed. However, when the database instance has skew and correlation, it is nontrivial to create an effective training set that anticipates workload shifts, where query structure changes and/or different regions of the data contribute to query answers. Our predictive model may perform poorly with these out-of-distribution inputs. … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 45 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?