This study reviewed the applicability of AI-based models to predict flood water level and evaluate flood damage in small rivers with short arrival times. The Namyangju-si (Jingwan Bridge) watershed, where the most flood warnings have occurred, was selected as the target of study. Rainfall and water level data from 2008 to 2020 were collected for the watershed. A total of 40 rainfall events were identified when the water level was 1m or higher from June to September, corresponding to the flood season. Additionally, flood water level forecasting was performed using AI-based models such as deep neural network (DNN), long short term memory (LSTM), and storage function models. Predictive power evaluation revealed the DNN model displayed the lowest normalized root mean square error (NRMSE) with a value of 0.06. This study concludes that there are issues with the existing flood warning and heavy rain warning standards due to rainfall variability, correlation with the occurrence of damage caused by heavy rain, and the application of consistent standards nationwide. To solve this issue, the cause of flood damage was classified and the risk assessment criteria established by linking the water level and rainfall data. To develop an optimal flood damage classification prediction model based on the established criteria, two models were applied: XGBoost and random forest model. Evaluation of model predictive power revealed the F1-score for XGBoost was 0.92, indicating excellent predictive power. Based on the models presented herein, the flood damage assessment technique using the results of flood prediction can be used as basic data for disaster managers’ decision-making.