Water features such as rivers, clouds, and aquifers are primarily understood from sensor measurements. Ontologies for the hydro domain play a key role in describing sensor measurements, particularly to aid water data interoperability, but water features are under-represented in such ontologies. In this paper we build upon existing work in hydro ontologies to enhance the characterization and representation of water features. An enhanced theory of physical object parthood is developed that enables water features to be characterized as wholes with various essential parts, building on Fine's theory of parts and Hayes' ontology of liquids. The results are represented as a formal extension of the DOLCE ontology, and advance the HyFO reference ontology for the hydro domain. .
B. Brodaric et al. / Water featuresheight remains despite the departure of specific water matter amounts. The key aspects of a river that are thus differentiated by Fine include its water object, container, amounts of water matter and their flow. However, a river is not identified with any of these key aspects and the exact nature of the relationship between a river and each aspect is not explicitly addressed, as river ontology is not the focus of the work.Applied ontology. The ontology of fluids (Hayes, 1985) recognizes two more key aspects: (1) the void hosted by a container, such as the space in a river channel, and (2) the supporting entity holding up the water, such as a riverbed. Water features are then variously identified with a key aspect, initially with the void and then with the water object. In both cases the identification is problematic, as it implies, for example, contrary persistence conditions in the case of the void, because a river would then exist whenever its channel space exists, and it precludes the existence of dry rivers in the water object case. Whole-part relations are also not used to connect a water feature to its key aspects, such as a river to its container or void, though relations for the support, containment, connectivity, and movement of water matter appear fundamental.The emphasis on water movement is elevated in a process-oriented approach, in which the processes enacted by an object are essential to its identity and existence, with notable examples including waterfalls and rivers Mizoguchi, 2009). However, voids (Casati andVarzi, 1994;Hahmann and Brodaric, 2012) do not play a significant role in the makeup of a water feature in this approach, water features are not clearly differentiated from water objects, and tying water feature identity to enacted processes results in water features that do not exist when the processes stop or pause, e.g. if the water stops running then the hydraulic erosion of the river channel also stops, thus the river does not exist in dry periods.The potential to differentiate water features from water objects is evident in related work on quantities, such as fluids (Guizzardi, 2010), where a wine vintage is delineated from its wine matter amounts and containers. However, a vintage is ...