2022
DOI: 10.31234/osf.io/ybwxh
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Modeling Task Effects in Human Reading with Neural Network-based Attention

Abstract: Research on human reading has long documented that reading behavior shows task-specific effects, but it has been challenging to build general models predicting what reading behavior humans will show in a given task. We introduce NEAT, a computational model of the allocation of attention in human reading, based on the hypothesis that human reading optimizes a tradeoff between economy of attention and success at a task. Our model is implemented using contemporary neural network modeling techniques, and makes exp… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 69 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?