Protection relays are important equipment used for protection, control, and metering functions in the power grid. These relays are used to protect critical and difficult-to-replace equipment, like generators, transformers, and capacitor banks. Once the protection devices are disturbed or damaged, a high risk of power generation interruption occurs. Therefore, it is important and necessary to study the relay’s immunity to electromagnetic pulse (EMP) events. As a preliminary step toward empirical experimentation on actual equipment, this manuscript outlines an economical and efficient methodology for evaluating the impact of an EMP. An impedance measurement strategy was employed to model the equipment, setting the stage for subsequent immunity analyses. These analyses included the pulse current injection (PCI) method, which utilized an injecting probe to introduce the transient, and frequency domain electromagnetic (FEKO) simulation, which integrated electromagnetic coupling effects into the transient simulation. The impedance measurement and simulation results in this paper provide a reliable basis for gauging equipment performance in the face of HEMP threats. The results obtained using the PCI and FEKO simulations demonstrated the performance of different port responses under a high-altitude EMP, indicating the requirement for some protection to ensure the reliable operation of relays.