A nanostructured Ti50Ni25Fe25 phase (B2) was formed by mechanical alloying and its structural stability was studied as a function of pressure. The changes were followed by X-ray diffraction. The B2 phase was observed up to 7 GPa; for larger pressures, the B2 phase transformed into a trigonal/hexagonal phase (B19) that was observed up to the highest pressure used (18 GPa). Besides B2 and B19, elemental Ni or a SS-(Fe,Ni) and FeNi3 were observed. With decompression, the B2 phase was recovered. Using in situ angle-dispersive X-ray diffraction patterns, the single line method was applied to obtain the apparent crystallite size and the microstrain for both the B2 and the B19 phases as a function of the applied pressure. Values of the bulk modulus for the B2, B19, elemental Ni or SS-(Fe,Ni) and FeNi3 phases were obtained by fitting the pressure dependence of the volume to a Birch–Murnaghan equation of state (BMEOS).