Oxy-fuel combustion is considered as one of the promising carbon capture and storage (CCS) technologies for coal-fired boilers. In oxy-fuel combustion, the combustion gases are oxygen and the recirculating flue gas, and the main components of the combustion gas are O 2 , CO 2 and H 2 O [1]. The paper presents the results of the calculation of the flue gas amount during combustion of oil shale using oxy-fuel technology in a circulated fluidized bed (CFB) mode. The calculations were performed for different oil shale heating values and different recycled flue gas (RFG) ratios. Oxy-fuel combustion with flue gas recycling was found to enable the decrease of the extent of carbonate minerals decomposition (ECD), thereby increasing the amount of heat released per 1 kg of fuel. To minimize ECD, the recycled flue gas ratio should be maintained at a level higher than 0.7. This condition allows an increase of the partial pressure of CO 2 over the equilibrium state line of calcite decomposition reaction at the bed temperature. The decrease of ECD was observed up to CO2-min 0.28. k = The decrease of CO2 k leads to an additional increase in the amount of heat released during oil shale combustion per 1 kg and, depending on the mean lower heating value (LHV), the heat can be increased up to 0.34 MJ/kg. A comparison with the bituminous and anthracite coals revealed that the specific emission of CO 2 per input fuel energy for oil shale is expected to be even smaller compared with those of the considered coals.