In cardiac mitochondria, matrix free Ca2+ ([Ca2+]m) is primarily regulated by Ca2+ uptake and release via the Ca2+ uniporter (CU) and Na+/Ca2+ exchanger (NCE) as well as by Ca2+ buffering. Although experimental and computational studies on the CU and NCE dynamics exist, it is not well understood how matrix Ca2+ buffering affects these dynamics under various Ca2+ uptake and release conditions, and whether this influences the stoichiometry of the NCE. To elucidate the role of matrix Ca2+ buffering on the uptake and release of Ca2+, we monitored Ca2+ dynamics in isolated mitochondria by measuring both the extra-matrix free [Ca2+] ([Ca2+]e) and [Ca2+]m. A detailed protocol was developed and freshly isolated mitochondria from guinea pig hearts were exposed to five different [CaCl2] followed by ruthenium red and six different [NaCl]. By using the fluorescent probe indo-1, [Ca2+] and [Ca2+e]m were spectrofluorometrically quantified, and the stoichiometry of the NCE was determined. In addition, we measured NADH, membrane potential, matrix volume and matrix pH to monitor Ca2+-induced changes in mitochondrial bioenergetics. Our [Ca2+]e and [Ca2+]m measurements demonstrate that Ca2+ uptake and release do not show reciprocal Ca2+ dynamics in the extra-matrix and matrix compartments. This salient finding is likely caused by a dynamic Ca2+ buffering system in the matrix compartment. The Na+ - induced Ca2+ release demonstrates an electrogenic exchange via the NCE by excluding an electroneutral exchange. Mitochondrial bioenergetics were only transiently affected by Ca2+ uptake in the presence of large amounts of CaCl2, but not by Na+- induced Ca2+ release.