The buildings sector is the single most important end-user of final energy in the European Union and a significant contributor to carbon and greenhouse gas emissions. This work focuses on a review of available data that are used to calculate the annual emissions from electricity generation in the European Union and quantify indirect emissions from the use of electricity in the buildings sector. Historical data since 1990 are used to derive simple empirical correlations for the time evolution of emissions factors related to electricity production in each Member State of the European Union. More recent trajectories using data from the last ten years are also presented. The derived correlations can be easily integrated in building stock modeling and national studies to facilitate forward-looking projections of emissions from electricity use in buildings. The EU-27 averages 0.2883 kgCO2-eq/kWhel, ranging from 0.0456 kgCO2-eq/kWhel in Sweden up to 1.0595 kgCO2-eq/kWhel in Poland. As a case study, the derived coefficients are then used to quantify the indirect emissions from the electricity consumption attributed to the building stock in each EU Member State. The calculated total EU-27 GHG indirect emissions attributed to electricity consumption amounted to 215 MtCO2-eq for residential buildings and 201 MtCO2-eq for non-residential buildings. In addition, the proposed correlations are used to demonstrate how they can be used for more realistic future projections of emissions towards the national targets in Greece and Poland.