The main goal of the present paper is to approach the modeling of one of the most important and critical failure modes for composite laminates which is known as interlaminar delamination in the aeronautical structures. The analytical model is based on a fracture mechanics approach; it’s used to estimate the total mixed mode energy release rate for composite laminates. A finite element simulation has been achieved in combination with the virtual crack closure technique (VCCT) to analyze the effect of temperature on the interlaminar fracture toughness growth of a delaminated carbon/epoxy material, namely IM7/8552 subjected to mechanical loading at variable temperatures. The developed model may serve as the basis for treating different types of thermal and mechanical loading, different stacking sequences and thickness of lamina in order to build safe working conditions for composite laminates.