The statistics and cyclical swings of macroeconomics are necessary for exploring the internal laws and features of the market economy. To realize intelligent and efficient macroeconomic forecast, this paper puts forward a macroeconomic forecast model based on improved long short-term memory (LSTM) neural network. Firstly, a scientific evaluation index system (EIS) was constructed for macroeconomy. The correlation between indices was measured by Spearman correlation coefficient, and the index data were preprocessed by interpolating the missing items and converting low-frequency series into high-frequency series. Next, the corresponding mixed frequency dataset was constructed, followed by the derivation of the state space equation. Then, the LSTM neutral network was optimized by the Kalman filter or macroeconomic forecast. The effectiveness of the proposed forecast method was verified through experiments. The research results lay a theoretical basis for the application of LSTM in financial forecasts.