Существует значительное количество прикладных задач, для решения которых применяется математическое моделирование динамических процессов в деформируемых средах. К таким задачам относят моделирование распространения упругих волн в геологических средах, в том числе с учетом ледовых образований, их рассеяния на зонах трещиноватости. Актуальность этих постановок обусловлена важностью решения обратных задач сейсмической разведки, обработки данных сейсмической разведки с целью уточнения запасов углеводородов и определения расположения углеводородов и других полезных ископаемых. Поэтому приобретает важность разработка высокоточных численных методов, позволяющих моделировать упругие волны в деформируемых средах. Одним из этих методов является сеточно-характеристический численный метод, примененный в данной работе. Этот численный метод применяется для решения прямых задач, то есть для расчета распространения упругих волн при известных параметрах рассматриваемой среды. А для решения обратной задачи по восстановлению параметров геологической среды по данным сейсмической разведки можно применять нейронные сети, для обучения которых можно использовать многократное решение прямых задач сеточно-характеристическим методом. В данной работе приведены примеры решения разнообразных прямых задач по распространению упругих волн в неоднородных геологических средах, в том числе в зоне Арктики, а также представлена постановка задачи по обучению нейронных сетей и графики, показывающие эффективность их обучения с использованием двух различных подходов.
Many problems can be solved with the simulation of dynamic processes in deformable media. They are the simulation of elastic wave propagation in rocks including ice formations, and wave scattering on rock-fracture zones. Such studies are important for solving inverse problems of seismic exploration and seismic data processing to get a better estimation of hydrocarbon reserves, locate hydrocarbons and other minerals. Therefore, it is necessary to develop high-precision numerical methods used to simulate elastic waves in deformable media. One of such methods is the grid-characteristic approach used in this work. It is suitable for solving direct problems, i.e., to analyze the propagation of elastic waves in a medium with known properties. Neural networks can be applied to solve the inverse problem: reconstructing the geology from seismic survey data. Multiple solving of direct problems by the gridcharacteristic approach is used for network training. This paper contains some examples of solving a range of direct problems on the elastic wave propagation in heterogeneous rocks, also in the Arctic zone, and the problem statement for training neural networks and graphs is proposed to demonstrate the efficiency of training with two approaches.