In this work, the physical model of a polymer in a melt blowing process is established and solved by introducing the numerical computation results of the air jet flow field of the dual slot sharp inset die. The influence of the melt blowing processing parameters and the die design parameters on the fiber diameter is also studied. A lower polymer throughput rate, higher polymer melt initial temperature, higher air initial temperature, higher air initial velocity, smaller angle between slot and axis of the spinneret, smaller width of the die head, and larger width of the slot can all produce finer fibers. At the same time, the air jet flow field model of the dual slot sharp inset die of polypropylene polymer nonwovens fabrics in melt blowing process was also established. The air jet flow field model was solved by using the finite difference method. The computational simulation results of the distributions of the z-components of air temperature and air velocity along the spinline during melt blowing process are in accordance with the experimental data. The air drawing model of melt blowing process was simulated by means of the numerical simulation results of the air jet flow field. The predicted fiber diameter agree with the experimental data. The effects of the air initial velocity and air initial temperature on the fiber diameter were studied and discussed. The results demonstrate that a higher air initial velocity and a higher air initial temperature are beneficial to the air drawing of the polymer melt and thus to reduced fiber diameter. The results show the great potential of this research for computer assisted design in melt blowing nonwoven process and technology. POLYM. ENG. SCI.,